程序存在大量SMC,且嵌套多层,除最后一层外,每层功能包括四个功能:一是真实原指令功能;一是清除上层解码;一是对下层进行解码(范围为下层代码入口至全部代码结束);一是进行代码段及栈的迁移(数据及栈都在程序的代码段,紧接代码后)。每层代码中都有花指令,个别层还有反调试和反虚拟机。程序的输入在SMC代码外,输入后到程序输出校验结果不能随意停下。
开始看到代码有点蒙,对于每层代码结构不是很了解。手工调试了一段时间,摸索到了一点规律。
因为有代码段和栈的迁移,所以代码中不能硬编码绝对地址,都是相对当前EIP的相对偏移,所以取解码开始地址、取全局变量地址、EBP地址都是大多是根据当前EIP计算出来的,如下:
计算下一层代码入口地址,准备迁移代码并call执行 .text:0040171D E8 00 00 00 00 call $+5 .text:00401722 59 pop ecx .text:00401723 81 E9 48 10 40 00 sub ecx, 401048h .text:00401729 81 C1 43 11 40 00 add ecx, 401143h .text:0040172F E8 00 00 00 00 call $+5 .text:00401734 5F pop edi .text:00401735 81 EF 5A 10 40 00 sub edi, 40105Ah .text:0040173B 81 C7 10 10 40 00 add edi, 401010h 计算下一层解码开始地址 .text:00401845 E8 00 00 00 00 call $+5 .text:0040184A 5E pop esi .text:0040184B 81 EE 70 11 40 00 sub esi, 401170h .text:00401851 81 C6 01 12 40 00 add esi, 401201h .text:00401857 B9 27 CD 15 00 mov ecx, 15CD27h .text:0040185C FC cld .text:0040185D EB 1B jmp short loc_40187A 计算数据全局变量开始地址 .text:0040185F 9D popf .text:00401860 5F pop edi .text:00401861 5E pop esi .text:00401862 5A pop edx .text:00401863 59 pop ecx .text:00401864 5B pop ebx .text:00401865 58 pop eax .text:00401866 E8 00 00 00 00 call $+5 .text:0040186B 5E pop esi .text:0040186C 81 EE 91 11 40 00 sub esi, 401191h .text:00401872 81 C6 39 DF 55 00 add esi, 55DF39h .text:00401878 EB 05 jmp short loc_40187F 真实功能指令 .text:0040187F 8A 86 A7 01 00 00 mov al, [esi+1A7h] .text:00401885 32 86 B7 01 00 00 xor al, [esi+1B7h] .text:0040188B 88 45 FF mov [ebp-1], al
同时我们注意到只有计算解码地址和全局变量地址时,才用到ESI寄存器存储地址,而局部变量是根据EBP寻址的,代码段和栈迁移时都会计算出相应的EBP。最重要的一点是:解码代码不受解码前运行时寄存器及栈的影响。
因为代码模式相对比较固定,结合上面的分析信息,对于解码就有了思路了,可以模拟运行或动态调试,跳过其它代码,只执行解码部分代码,解出全部指令。虽然代码有小调整,修正两次代码就OK了。用unicorn模拟运行,速度太慢,而后换了ida+windbg的debug方式。代码如下:
# -*- coding:utf-8 -*- from __future__ import print_function from idaapi import * from idc import * stop = False def scan(patt,start=0,end=0): pattern = patt if start: addr = start else: addr = MinEA() if end: addr1 = end else: addr1 = MaxEA() for i in range(addr,addr1): addr = FindBinary(addr, SEARCH_DOWN|SEARCH_NEXT, pattern) if addr != BADADDR: return addr return 0 def get_saddr(addr): while True: addr = scan('E8 00 00 00 00 5e 81',start = addr,end=0x55e602) if addr == 0: return 0 if Byte(addr+12) == 0x81 and Byte(addr+18) == 0xb9: return addr elif Byte(addr+12) == 0x81 and Byte(addr+18) == 0xeb and Byte(addr+18+2+Byte(addr+18+1)) == 0xb9: return addr addr += 5 def patch_one_round(address,waddr): SetRegValue(address,'eip') addr = waddr+3 addr = scan('85 c9',start=addr,end=0x55e602) if addr == 0: return False addr += 2 while Byte(addr) == 0xeb: off = Byte(addr+1) off = off if off < 0x80 else off - 0x100 addr += 2+off if Byte(addr) == 0x75: addr += 2 elif Word(addr) == 0x850f: addr += 6 else: return False if addr - waddr > 0x100: return False AddBpt(addr) EnableBpt(addr, True) continue_process() GetDebuggerEvent(WFNE_SUSP, -1) DelBpt(addr) return True def patch_one_byte(address,waddr): SetRegValue(address,'eip') addr = waddr+3 AddBpt(addr) EnableBpt(addr, True) continue_process() GetDebuggerEvent(WFNE_SUSP, -1) DelBpt(addr) return True def quick_ALT_K(saddr = 0x40163E): count = 0 # saddr = here() while True: print('start_addr:{:08X}'.format(saddr)) waddr = scan('88 46',start=saddr,end=0x55e602) if waddr == 0 or waddr > 0x55e602 or Byte(waddr+2) not in [0x1,0xff]: # waddr = scan('88 46 01',start=saddr,end=0x55e602) print('waddr err or finished!') break print('waddr:{:08X}'.format(waddr)) if waddr - saddr < 10 or waddr - saddr > 0x100: print('addr failed!') break addr_tmp = waddr+3 while Byte(addr_tmp) in [0xe9,0xeb]: if Byte(addr_tmp) == 0xe9: addr_tmp = (addr_tmp+5+Dword(addr_tmp+1))&0xffffffff else: off = Byte(addr_tmp+1) off = off if off < 0x80 else off - 0x100 addr_tmp += 2+off if Byte(addr_tmp) != 0x49: patch_one_byte(saddr,waddr) print('patch one byte') else: if not patch_one_round(saddr,waddr): break count += 1 if count % 500 == 0: print(count) save_database('crackme_fix_idb') cur_ip = GetRegValue('eip') print('curr_ip:{:08X}'.format(cur_ip)) for i in range(cur_ip,cur_ip+0x300): MakeUnkn(i,0) saddr = get_saddr(cur_ip-1) if saddr == 0: print('saddr err or finished!') break for i in range(0x4016A9,0x55e602): MakeUnkn(i,0) LoadDebugger('windbg',1) AddBpt(0x40123F) StartDebugger('','','') GetDebuggerEvent(WFNE_SUSP, -1) DelBpt(0x40123F) quick_ALT_K() #if AddHotkey("Alt+K","quick_ALT_K")!=IDCHK_OK: # print('hotkey err!') print('end.')
反调试就一种:rdtsc,发现调试修改局部变量值,还有两种反虚拟机的代码。
解码后将无用代码nop掉了。发现SMC部分开始到到校验前都在一个函数中:
.text:00401663 000 E8 00 00 00 00 call $+5 .text:00401668 004 5E pop esi .text:00401669 000 81 EE 68 16 40 00 sub esi, 401668h .text:0040166F 000 81 C6 13 E6 55 00 add esi, offset table_256_55E613 .text:00401675 000 55 push ebp .text:00401676 004 8B EC mov ebp, esp .text:00401678 004 83 EC 2C sub esp, 2Ch .text:0055E0E6 030 83 C4 2C add esp, 2Ch .text:0055E0E9 004 8B E5 mov esp, ebp .text:0055E0EB 004 5D pop ebp .text:0055E0EC 000 E9 54 04 00 00 jmp j_check_55E545
直接创建函数,调整后,可以F5,伪代码形如:
v0 = t_190[4] ^ table_256_55E613[t_1a0[4] ^ result[4] ^ 9]; v1 = t_190[5] ^ table_256_55E613[t_1a0[1] ^ result[1] ^ 9]; v2 = t_190[6] ^ table_256_55E613[result[14] ^ t_1a0[14] ^ 9]; v3 = t_190[7] ^ table_256_55E613[result[11] ^ t_1a0[11] ^ 9]; v4 = t_190[8] ^ table_256_55E613[result[8] ^ t_1a0[8] ^ 9]; v5 = t_190[9] ^ table_256_55E613[(t_1a0[5] ^ result[5]) ^ 9]; v6 = t_190[10] ^ table_256_55E613[t_1a0[2] ^ result[2] ^ 9]; v7 = t_190[11] ^ table_256_55E613[result[15] ^ t_1a0[15] ^ 9]; v8 = t_190[12] ^ table_256_55E613[result[12] ^ t_1a0[12] ^ 9]; v9 = t_190[13] ^ table_256_55E613[(result[9] ^ t_1a0[9]) ^ 9]; v10 = t_190[14] ^ table_256_55E613[t_1a0[6] ^ result[6] ^ 9]; v11 = t_190[15] ^ table_256_55E613[t_1a0[3] ^ result[3] ^ 9]; v12 = t_190[0] ^ table_256_55E613[t_1a0[0] ^ result[0] ^ 9]; v13 = t_190[1] ^ table_256_55E613[result[13] ^ t_1a0[13] ^ 9]; v14 = t_190[2] ^ table_256_55E613[(result[10] ^ t_1a0[10]) ^ 9]; v15 = t_190[3] ^ table_256_55E613[(result[7] ^ t_1a0[7]) ^ 9]; v16 = 27 * (v12 >> 7); v17 = 27 * (v12 >> 7) ^ 2 * v12; v18 = 2 * v17 ^ 27 * (v17 >> 7); v19 = 27 * (v13 >> 7); v20 = 27 * (v13 >> 7) ^ 2 * v13; v21 = 27 * (v14 >> 7); v22 = 27 * (v14 >> 7) ^ 2 * v14; v23 = 27 * (v15 >> 7); v24 = 27 * (v15 >> 7) ^ 2 * v15; result[2] = aSnail3896q3405[2] ^ table_256_55E613[((t1_55E723[10] ^ v662) - 1)]; result[6] = aSnail3896q3405[6] ^ table_256_55E613[(v679 - 1)]; v689 = table_256_55E613[((t1_55E723[2] ^ v634) - 1)]; v690 = table_256_55E613[((t1_55E723[6] ^ v648) - 1)]; result[3] = aSnail3896q3405[3] ^ table_256_55E613[((t1_55E723[7] ^ v650) - 1)]; v691 = aSnail3896q3405[7] ^ table_256_55E613[((t1_55E723[11] ^ v664) - 1)]; result[4] = aSnail3896q3405[4] ^ v682; v692 = table_256_55E613[(v680 - 1)]; result[5] = aSnail3896q3405[5] ^ v686; result[8] = aSnail3896q3405[8] ^ v683; v693 = table_256_55E613[((t1_55E723[3] ^ v636) - 1)]; result[0] = aSnail3896q3405[0] ^ v681; result[1] = aSnail3896q3405[1] ^ v685; result[7] = v691; result[9] = aSnail3896q3405[9] ^ v687; result[12] = aSnail3896q3405[12] ^ v684; result[13] = aSnail3896q3405[13] ^ v688; result[10] = aSnail3896q3405[10] ^ v689; result[11] = aSnail3896q3405[11] ^ v692; result[15] = aSnail3896q3405[15] ^ v693; result[14] = aSnail3896q3405[14] ^ v690;
本想弄出个去除编码与无用代码且运行正常的程序,对原程序进行patch,发现计算结果不正确,折腾了两天也没找出是哪patch多了或少了。于是放弃。继续任务主线,解题。
在解代码前,测试过。输入的只要改动一个bit都会致使最后计算结果大相径庭,当时怀疑有对称加密。从伪代码可以很容易得出加密算法是AES。主要特征有计算过程中用到的256字节表及替换操作,最明显的是有限域的乘法代码。
v17 = 27 * (v12 >> 7) ^ 2 * v12; v18 = 2 * v17 ^ 27 * (v17 >> 7);
再将伪代码与AES算法进行对照,确定为AES算法无疑,只是作了修改。地址0x55E613开始的256字节表及后面的11组16字节表应该就是inv_sbox和round_key了。
很明显,add_round_key这部分被改了,行变换则没改。列混合变换一下一眼看不出来。调整了下伪代码,列出混合变换向量,发现列混合变换也没改。
//v14,v15,v16,v17为一行状态变量 v18 = 27 * (v14 >> 7); v19 = 27 * (v14 >> 7) ^ 2 * v14; v20 = 2 * v19 ^ 27 * (v19 >> 7); v21 = 27 * (v15 >> 7); v22 = 27 * (v15 >> 7) ^ 2 * v15; v23 = 27 * (v16 >> 7); v24 = 27 * (v16 >> 7) ^ 2 * v16; v25 = 27 * (v17 >> 7); v26 = 27 * (v17 >> 7) ^ 2 * v17; v27 = v16 ^ v15 ^ v18 ^ 2 * v14 ^ v21 ^ 2 * v15 ^ v17 ^ 27 * (v19 >> 7) ^ 2 * v19 ^ 27 * (v20 >> 7) ^ 2 * v20 ^ 27 * ((2 * v22 ^ 27 * (v22 >> 7)) >> 7) ^ 2 * 2 * v22 ^ 27 * (v22 >> 7) ^ 27 * (v24 >> 7) ^ 2 * v24 ^ 27 * ((2 * v24 ^ 27 * (v24 >> 7)) >> 7) ^ 2 * 2 * v24 ^ 27 * (v24 >> 7) ^ 27 * ((2 * v26 ^ 27 * (v26 >> 7)) >> 7) ^ 2 * 2 * v26 ^ 27 * (v26 >> 7) 1110 14 E 1011 11 B 1101 13 D 1001 9 9
找了份AES的加解密代码,按照伪代码修改出解密过程,测试计算结果正确,直接复制解密过程代码,行逆序,修改+-号,sbox就OK了。
# -*- coding:utf-8 -*- Sbox = ( 0x90,0x75,0xB4,0x69,0x59,0x47,0x97,0xC6,0x1A,0xC2,0x3A,0xA9,0x0E,0x05,0xBB,0x21, 0xB9,0xBA,0x9B,0x92,0xCE,0xF2,0x6B,0xEB,0x7A,0x8F,0xE9,0x14,0xE1,0x61,0x06,0x5F, 0x87,0xE6,0x80,0xDE,0x45,0xA6,0x22,0x37,0x9A,0x50,0x39,0x49,0x8D,0x02,0xD6,0x04, 0x15,0x13,0x2F,0x53,0x8C,0xD1,0xD7,0x34,0x60,0xB0,0x93,0x66,0xF0,0xE4,0xD5,0x63, 0x1E,0x2C,0x83,0x30,0x4C,0x99,0xBD,0x8B,0xDD,0x9F,0x31,0x44,0x74,0xF9,0x23,0xAA, 0xC3,0x96,0xF6,0xCF,0x9D,0x88,0x41,0xF5,0x4E,0xAE,0xFF,0xE5,0x9E,0x1B,0x48,0xED, 0x7E,0xDF,0x84,0x2D,0x3D,0x32,0x3C,0x0F,0x36,0xE3,0xD8,0x17,0xA5,0x33,0x3B,0x94, 0xE8,0xD3,0x16,0xD4,0x7D,0x20,0x6D,0x5B,0x0D,0xE7,0x42,0x7C,0xF4,0xBE,0x1C,0xBF, 0x56,0x65,0xC7,0x4F,0xC0,0x6F,0xB3,0x7F,0x81,0x2A,0xD0,0x43,0x73,0x62,0xD9,0x64, 0x07,0xC4,0xEC,0xA1,0xF7,0xA7,0x76,0xFC,0x2E,0xC8,0x54,0xAF,0x26,0xF8,0x57,0x86, 0xB5,0x4D,0x67,0x25,0xF1,0x72,0x1F,0x70,0x01,0xA3,0x95,0x5D,0x98,0xAC,0x27,0xC1, 0xB6,0xEE,0xCC,0x38,0x71,0xB2,0x6A,0x2B,0x8E,0xCD,0x10,0x55,0x0C,0xAD,0xCB,0x78, 0x82,0x08,0x0A,0x46,0xF3,0x3F,0x77,0xC5,0x51,0x52,0x29,0x24,0x3E,0x5A,0xA0,0x35, 0x5C,0x4B,0xE0,0xE2,0x58,0x11,0x00,0xFE,0xA4,0x8A,0x0B,0xCA,0xDB,0x79,0x68,0x4A, 0x9C,0x5E,0x91,0x03,0x7B,0x19,0x6C,0xA8,0xC9,0x09,0xB7,0xA2,0xFA,0xEA,0x89,0xEF, 0x18,0xDC,0x28,0xBC,0xD2,0xFD,0xDA,0x1D,0xB1,0x6E,0xFB,0x85,0x12,0xB8,0xAB,0x40, ) InvSbox = ( 0xD6,0xA8,0x2D,0xE3,0x2F,0x0D,0x1E,0x90,0xC1,0xE9,0xC2,0xDA,0xBC,0x78,0x0C,0x67, 0xBA,0xD5,0xFC,0x31,0x1B,0x30,0x72,0x6B,0xF0,0xE5,0x08,0x5D,0x7E,0xF7,0x40,0xA6, 0x75,0x0F,0x26,0x4E,0xCB,0xA3,0x9C,0xAE,0xF2,0xCA,0x89,0xB7,0x41,0x63,0x98,0x32, 0x43,0x4A,0x65,0x6D,0x37,0xCF,0x68,0x27,0xB3,0x2A,0x0A,0x6E,0x66,0x64,0xCC,0xC5, 0xFF,0x56,0x7A,0x8B,0x4B,0x24,0xC3,0x05,0x5E,0x2B,0xDF,0xD1,0x44,0xA1,0x58,0x83, 0x29,0xC8,0xC9,0x33,0x9A,0xBB,0x80,0x9E,0xD4,0x04,0xCD,0x77,0xD0,0xAB,0xE1,0x1F, 0x38,0x1D,0x8D,0x3F,0x8F,0x81,0x3B,0xA2,0xDE,0x03,0xB6,0x16,0xE6,0x76,0xF9,0x85, 0xA7,0xB4,0xA5,0x8C,0x4C,0x01,0x96,0xC6,0xBF,0xDD,0x18,0xE4,0x7B,0x74,0x60,0x87, 0x22,0x88,0xC0,0x42,0x62,0xFB,0x9F,0x20,0x55,0xEE,0xD9,0x47,0x34,0x2C,0xB8,0x19, 0x00,0xE2,0x13,0x3A,0x6F,0xAA,0x51,0x06,0xAC,0x45,0x28,0x12,0xE0,0x54,0x5C,0x49, 0xCE,0x93,0xEB,0xA9,0xD8,0x6C,0x25,0x95,0xE7,0x0B,0x4F,0xFE,0xAD,0xBD,0x59,0x9B, 0x39,0xF8,0xB5,0x86,0x02,0xA0,0xB0,0xEA,0xFD,0x10,0x11,0x0E,0xF3,0x46,0x7D,0x7F, 0x84,0xAF,0x09,0x50,0x91,0xC7,0x07,0x82,0x99,0xE8,0xDB,0xBE,0xB2,0xB9,0x14,0x53, 0x8A,0x35,0xF4,0x71,0x73,0x3E,0x2E,0x36,0x6A,0x8E,0xF6,0xDC,0xF1,0x48,0x23,0x61, 0xD2,0x1C,0xD3,0x69,0x3D,0x5B,0x21,0x79,0x70,0x1A,0xED,0x17,0x92,0x5F,0xB1,0xEF, 0x3C,0xA4,0x15,0xC4,0x7C,0x57,0x52,0x94,0x9D,0x4D,0xEC,0xFA,0x97,0xF5,0xD7,0x5A, ) # learnt from http://cs.ucsb.edu/~koc/cs178/projects/JT/aes.c xtime = lambda a: (((a << 1) ^ 0x1B) & 0xFF) if (a & 0x80) else (a << 1) Rcon = ( 0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36, 0x6C, 0xD8, 0xAB, 0x4D, 0x9A, 0x2F, 0x5E, 0xBC, 0x63, 0xC6, 0x97, 0x35, 0x6A, 0xD4, 0xB3, 0x7D, 0xFA, 0xEF, 0xC5, 0x91, 0x39, ) def text2matrix(text): matrix = [] for i in range(16): byte = (text >> (8 * (15 - i))) & 0xFF if i % 4 == 0: matrix.append([byte]) else: matrix[i / 4].append(byte) return matrix def matrix2text(matrix): text = 0 for i in range(4): for j in range(4): text |= (matrix[i][j] << (120 - 8 * (4 * i + j))) return text class AES: def __init__(self, master_key): # self.change_key(master_key) self.round_keys = [ [0x73,0x6E,0x61,0x69],[0x6C,0x33,0x38,0x39],[0x36,0x71,0x33,0x34],[0x30,0x35,0x25,0x00], [0xE4,0x51,0x1D,0x6D],[0x88,0x62,0x25,0x54],[0xBE,0x13,0x16,0x60],[0x8E,0x26,0x33,0x60], [0x11,0x92,0xCD,0x74],[0x99,0xF0,0xE8,0x20],[0x27,0xE3,0xFE,0x40],[0xA9,0xC5,0xCD,0x20], [0xB3,0x2F,0x7A,0xA7],[0x2A,0xDF,0x92,0x87],[0x0D,0x3C,0x6C,0xC7],[0xA4,0xF9,0xA1,0xE7], [0x22,0x1D,0xEE,0xEE],[0x08,0xC2,0x7C,0x69],[0x05,0xFE,0x10,0xAE],[0xA1,0x07,0xB1,0x49], [0xF7,0xD5,0xD5,0xDC],[0xFF,0x17,0xA9,0xB5],[0xFA,0xE9,0xB9,0x1B],[0x5B,0xEE,0x08,0x52], [0xFF,0xE5,0xD5,0xE5],[0x00,0xF2,0x7C,0x50],[0xFA,0x1B,0xC5,0x4B],[0xA1,0xF5,0xCD,0x19], [0x59,0x58,0x01,0xD7],[0x59,0xAA,0x7D,0x87],[0xA3,0xB1,0xB8,0xCC],[0x02,0x44,0x75,0xD5], [0xC2,0xC5,0x02,0xA0],[0x9B,0x6F,0x7F,0x27],[0x38,0xDE,0xC7,0xEB],[0x3A,0x9A,0xB2,0x3E], [0x61,0xF2,0xB0,0x20],[0xFA,0x9D,0xCF,0x07],[0xC2,0x43,0x08,0xEC],[0xF8,0xD9,0xBA,0xD2], [0x62,0x06,0x05,0x61],[0x98,0x9B,0xCA,0x66],[0x5A,0xD8,0xC2,0x8A],[0xA2,0x01,0x78,0x58] ] def encrypt(self, plaintext): self.plain_state = text2matrix(plaintext) self.__add_round_key(self.plain_state, self.round_keys[:4]) self.__sub_bytes(self.plain_state) self.__trans_row_col(self.plain_state) self.__shift_rows(self.plain_state) self.__trans_row_col(self.plain_state) self.plain_state = map(lambda x:map(lambda y:(y+1)&0xff,x),self.plain_state) self.__add_round_key(self.plain_state, self.round_keys[4:8]) self.__mix_columns(self.plain_state) self.__sub_bytes(self.plain_state) self.__trans_row_col(self.plain_state) self.__shift_rows(self.plain_state) self.__trans_row_col(self.plain_state) self.plain_state = map(lambda x:map(lambda y:(y+2)&0xff,x),self.plain_state) self.__mix_columns(self.plain_state) self.__add_round_key(self.plain_state, self.round_keys[8:12]) self.__sub_bytes(self.plain_state) self.__trans_row_col(self.plain_state) self.__shift_rows(self.plain_state) self.__trans_row_col(self.plain_state) self.plain_state = map(lambda x:map(lambda y:y^9,x),self.plain_state) self.__add_round_key(self.plain_state, self.round_keys[12:16]) self.__mix_columns(self.plain_state) self.__sub_bytes(self.plain_state) self.__trans_row_col(self.plain_state) self.__shift_rows(self.plain_state) self.__trans_row_col(self.plain_state) self.plain_state = map(lambda x:map(lambda y:y^7,x),self.plain_state) self.__mix_columns(self.plain_state) self.__add_round_key(self.plain_state, self.round_keys[16:20]) self.__sub_bytes(self.plain_state) self.__trans_row_col(self.plain_state) self.__shift_rows(self.plain_state) self.__trans_row_col(self.plain_state) self.plain_state = map(lambda x:map(lambda y:(y-1)&0xff,x),self.plain_state) self.__add_round_key(self.plain_state, self.round_keys[20:24]) self.__mix_columns(self.plain_state) self.__sub_bytes(self.plain_state) self.__trans_row_col(self.plain_state) self.__shift_rows(self.plain_state) self.__trans_row_col(self.plain_state) self.plain_state = map(lambda x:map(lambda y:y^3,x),self.plain_state) self.__mix_columns(self.plain_state) self.__add_round_key(self.plain_state, self.round_keys[24:28]) self.__sub_bytes(self.plain_state) self.__trans_row_col(self.plain_state) self.__shift_rows(self.plain_state) self.__trans_row_col(self.plain_state) self.plain_state = map(lambda x:map(lambda y:y^8,x),self.plain_state) self.__mix_columns(self.plain_state) self.__add_round_key(self.plain_state, self.round_keys[28:32]) self.__sub_bytes(self.plain_state) self.__trans_row_col(self.plain_state) self.__shift_rows(self.plain_state) self.__trans_row_col(self.plain_state) self.plain_state = map(lambda x:map(lambda y:y^6,x),self.plain_state) self.__add_round_key(self.plain_state, self.round_keys[32:36]) self.__mix_columns(self.plain_state) self.__sub_bytes(self.plain_state) self.__trans_row_col(self.plain_state) self.__shift_rows(self.plain_state) self.__trans_row_col(self.plain_state) self.__mix_columns(self.plain_state) self.__add_round_key(self.plain_state, self.round_keys[36:40]) self.__sub_bytes(self.plain_state) self.__trans_row_col(self.plain_state) self.__shift_rows(self.plain_state) self.__trans_row_col(self.plain_state) self.plain_state = map(lambda x:map(lambda y:y^9,x),self.plain_state) self.__add_round_key(self.plain_state, self.round_keys[40:]) return matrix2text(self.plain_state) def decrypt(self, ciphertext): self.cipher_state = text2matrix(ciphertext) self.__add_round_key(self.cipher_state, self.round_keys[40:]) self.cipher_state = map(lambda x:map(lambda y:y^9,x),self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_shift_rows(self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_sub_bytes(self.cipher_state) self.__add_round_key(self.cipher_state, self.round_keys[36:40]) self.__inv_mix_columns(self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_shift_rows(self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_sub_bytes(self.cipher_state) self.__inv_mix_columns(self.cipher_state) self.__add_round_key(self.cipher_state, self.round_keys[32:36]) self.cipher_state = map(lambda x:map(lambda y:y^6,x),self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_shift_rows(self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_sub_bytes(self.cipher_state) self.__add_round_key(self.cipher_state, self.round_keys[28:32]) self.__inv_mix_columns(self.cipher_state) self.cipher_state = map(lambda x:map(lambda y:y^8,x),self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_shift_rows(self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_sub_bytes(self.cipher_state) self.__add_round_key(self.cipher_state, self.round_keys[24:28]) self.__inv_mix_columns(self.cipher_state) self.cipher_state = map(lambda x:map(lambda y:y^3,x),self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_shift_rows(self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_sub_bytes(self.cipher_state) self.__inv_mix_columns(self.cipher_state) self.__add_round_key(self.cipher_state, self.round_keys[20:24]) self.cipher_state = map(lambda x:map(lambda y:(y+1)&0xff,x),self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_shift_rows(self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_sub_bytes(self.cipher_state) self.__add_round_key(self.cipher_state, self.round_keys[16:20]) self.__inv_mix_columns(self.cipher_state) self.cipher_state = map(lambda x:map(lambda y:y^7,x),self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_shift_rows(self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_sub_bytes(self.cipher_state) self.__inv_mix_columns(self.cipher_state) self.__add_round_key(self.cipher_state, self.round_keys[12:16]) self.cipher_state = map(lambda x:map(lambda y:y^9,x),self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_shift_rows(self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_sub_bytes(self.cipher_state) self.__add_round_key(self.cipher_state, self.round_keys[8:12]) self.__inv_mix_columns(self.cipher_state) self.cipher_state = map(lambda x:map(lambda y:(y-2)&0xff,x),self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_shift_rows(self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_sub_bytes(self.cipher_state) self.__inv_mix_columns(self.cipher_state) self.__add_round_key(self.cipher_state, self.round_keys[4:8]) self.cipher_state = map(lambda x:map(lambda y:(y-1)&0xff,x),self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_shift_rows(self.cipher_state) self.__trans_row_col(self.cipher_state) self.__inv_sub_bytes(self.cipher_state) self.__add_round_key(self.cipher_state, self.round_keys[:4]) return matrix2text(self.cipher_state) def __add_round_key(self, s, k): for i in range(4): for j in range(4): s[i][j] ^= k[i][j] def __round_encrypt(self, state_matrix, key_matrix): self.__sub_bytes(state_matrix) self.__shift_rows(state_matrix) self.__mix_columns(state_matrix) self.__add_round_key(state_matrix, key_matrix) def __round_decrypt(self, state_matrix, key_matrix): self.__add_round_key(state_matrix, key_matrix) self.__inv_mix_columns(state_matrix) self.__inv_shift_rows(state_matrix) self.__inv_sub_bytes(state_matrix) def __sub_bytes(self, s): for i in range(4): for j in range(4): s[i][j] = Sbox[s[i][j]] def __trans_row_col(self,s): t1 = s[0][0], s[1][0], s[2][0], s[3][0] t2 = s[0][1], s[1][1], s[2][1], s[3][1] t3 = s[0][2], s[1][2], s[2][2], s[3][2] t4 = s[0][3], s[1][3], s[2][3], s[3][3] s[0][0], s[0][1], s[0][2], s[0][3] = t1[0], t1[1], t1[2], t1[3] s[1][0], s[1][1], s[1][2], s[1][3] = t2[0], t2[1], t2[2], t2[3] s[2][0], s[2][1], s[2][2], s[2][3] = t3[0], t3[1], t3[2], t3[3] s[3][0], s[3][1], s[3][2], s[3][3] = t4[0], t4[1], t4[2], t4[3] def __inv_sub_bytes(self, s): for i in range(4): for j in range(4): s[i][j] = InvSbox[s[i][j]] def __shift_rows(self, s): s[1][0], s[1][1], s[1][2], s[1][3] = s[1][1], s[1][2],s[1][3],s[1][0] s[2][0], s[2][1], s[2][2], s[2][3] = s[2][2],s[2][3],s[2][0], s[2][1] s[3][0], s[3][1], s[3][2], s[3][3] = s[3][3], s[3][0],s[3][1],s[3][2] def __inv_shift_rows(self, s): s[1][0], s[1][1], s[1][2], s[1][3] = s[1][3], s[1][0], s[1][1], s[1][2] s[2][0], s[2][1], s[2][2], s[2][3] = s[2][2], s[2][3], s[2][0], s[2][1] s[3][0], s[3][1], s[3][2], s[3][3] = s[3][1], s[3][2], s[3][3], s[3][0] def __mix_single_column(self, a): # please see Sec 4.1.2 in The Design of Rijndael t = a[0] ^ a[1] ^ a[2] ^ a[3] u = a[0] a[0] ^= t ^ xtime(a[0] ^ a[1]) a[1] ^= t ^ xtime(a[1] ^ a[2]) a[2] ^= t ^ xtime(a[2] ^ a[3]) a[3] ^= t ^ xtime(a[3] ^ u) def __mix_columns(self, s): for i in range(4): self.__mix_single_column(s[i]) def __inv_mix_columns(self, s): # see Sec 4.1.3 in The Design of Rijndael for i in range(4): u = xtime(xtime(s[i][0] ^ s[i][2])) v = xtime(xtime(s[i][1] ^ s[i][3])) s[i][0] ^= u s[i][1] ^= v s[i][2] ^= u s[i][3] ^= v self.__mix_columns(s) if __name__ == '__main__': cipher = AES(0) m = cipher.decrypt(int('C0B10D687FAB692FFED16BDFFBF2BA2E',16)) print hex(m)[2:].replace('L','')#.decode('hex') m = 'KCTF'+'\x00'*12 # m = 'B54333CE90874B76' c = cipher.encrypt(int(m.encode('hex'),16)) print hex(c)[2:].replace('L','').upper()
对于此题有两点要说的:
1.2880层解码,有以量取胜的嫌疑,通常情况下做题者不喜。
2.只要模式较固定,脚本解码就有了可能。