招新小广告CTF组诚招re、crypto、pwn、misc、合约方向的师傅,长期招新IOT+Car+工控+样本分析多个组招人有意向的师傅请联系邮箱
[email protected](带上简历和想加入的小组)
SMC
写个idapython patch一下
start = 0x140003000
for i in range(0x600):
PatchByte(start+i, (Byte(start+i)+0x42)&0xff)
base24
叫gpt帮忙写一个解密就行
# -*- coding: utf-8 -*-
import libnum
def decode_base24(ciphertext, code_table):
"""
Decodes a base24 encoded string using a custom code table.
:param ciphertext: The base24 encoded string to decode.
:param code_table: A string containing all the characters in the base24 code table.
:return: The decoded string.
"""
# 将密文字符串中的每个字符转换为其在码表中的索引
temp = [code_table.index(char) for char in ciphertext if char in code_table]
# 将索引转换为十进制数
num = 0
for i, value in enumerate(temp):
num += value * (24 ** (len(temp) - i - 1))
# 将十进制数转换为字符串
decoded_bytes = libnum.n2s(num)
# 解码为可读字符串
decoded_string = decoded_bytes.decode('utf-8', errors='ignore')
return decoded_string# 自定义码表
base24_code_table = "4836CR7F9TXGQVWYB2JPHKDM"
# 放入密文
ciphertext = "4FKMKYP497G87QXHBTRJKCGM63XXCC8CDQX39TQPYFY"
# 解码
decoded_string = decode_base24(ciphertext, base24_code_table)
print(decoded_string[::-1])
Vmp的壳子
不好脱,直接字符串大法搜索关键函数。
发现有些关键信息,比如勒索病毒加密等。
跟进svchost.exe字符串发现存在一个异或解密,配合字符串信息大致认为解密后释放了一个svchost.exe程序或者注入进了svchost进程。
丢沙盒里检测可以看到确实如此。
因为存在断点check,所以先运行再瞬间断点,即可绕过。
把0x3650048的数据提取出来再异或。
可以看到elf文件中对文件进行了加密。
典型的aes加密
Key导出来则是:3b7e151638aed2a6bbf7158819cf4f3c
赛博厨子加上xor爆破解密得到flag
这一题没啥好说的,1024的n,给了p的高256,就是一个已知p高位攻击,稍微爆破几个比特就行了。具体爆破多少位,取决于你设置的 epilon是多少,8比特差不多要0.01,12比特要0.02,我的电脑差不多一个小时。
第一问给的是
p1 = getPrime(1024) q1 = nextprime(2024 * p1)
直接对 n1/2024 开跟就能得到一个素数了
第二问是
n2 = p2 * q2 n22 = p2 * p2 + q2 * q2
解方程,没啥说的。
第三问
r = random.getrandbits(1024)
p3 = r
while not is_prime(p3):
p3 += random.getrandbits(400)
q3 = r
while q3 < p3:
q3 += random.getrandbits(500)
while not is_prime(p3):
q3 += random.getrandbits(500)
n3 = p3 * q3
f.write("n3 = {0}\n".format(n3))
这里题目有点问题,都是以 p3 是否为素数来结束循环,所以q3其实不是一个素数。。。
但比赛的是时候没想那么多。测试发现就是直接对 n3 开根就能得到 p3 的高位,然后就是一个p的已知高位攻击。
最后一问才是这一题最难的地方,
m1 = p1 * m * m + p2 * m + p3
m2 = q1 * m * m + q2 * m + q3
c1 = pow(m1, e, n)
c2 = pow(m2, e, n)
这里根据前面我们已经获得到 p1,p2,p3,q1,q2,q3,只有未知数m
并且m是两个方程,也就是 f(m) = p1 * m * m + p2 * m + p3,g(m)=q1 * m * m + q2 * m + q3的共根。这里引用明文相关攻击的思路,就是对两个多项式求一个 GCD,但是直接GCD可能会爆递归深度,这里用的是 fast_polymonial_gcd,当初做seectf遇到的 https://jayxv.github.io/2023/06/15/2023%20seectf/,罗密欧朱丽叶这一题。
结束
招新小广告
ChaMd5 Venom 招收大佬入圈
新成立组IOT+工控+样本分析 长期招新